

How to use rst2pdf

Contents

	1 Introduction

	1.1 Related Reading

	2 Command line options

	3 Configuration File

	4 Pipe usage

	5 Images

	5.1 Inline

	5.2 Supported Image Types

	5.3 Image Size

	6 Styling ReStructuredText

	6.1 Applying Styles

	6.2 Headers and Footers

	6.3 Footnotes

	7 Customizing PDF Output

	7.1 Using Stylesheets

	7.2 Included StyleSheets

	7.3 Default Stylesheet

	7.4 Migrating Stylesheet Format

	7.5 Migrating to the New Default Stylesheet

	7.5.1 Updated Font Alias Names

	7.5.2 Updated Pate Template Names

	8 Creating Stylesheets

	8.1 Styles in Detail

	8.2 Style Elements

	8.2.1 Inline Styles

	8.2.2 Lists

	8.3 Page Layout

	8.3.1 Page Setup

	8.3.2 Page Templates

	8.4 Font Alias

	8.5 Widows and Orphans

	8.6 Table Styles

	9 Syntax Highlighting

	9.1 File inclusion

	9.1.1 Include with Boundaries

	9.1.2 Options

	10 Fonts

	10.1 Standard PDF Fonts

	10.2 Font Embedding

	10.2.1 The Easy Way

	10.2.1.1 Fonty is a True Type font:

	10.2.1.2 Fonty is a Type 1 font:

	10.2.2 The Harder Way (True Type)

	11 Raw Directive

	11.1 Raw PDF

	11.2 Page Counters

	11.3 Page Breaks

	11.4 Frame Breaks

	11.5 Page Transitions

	11.6 Text Annotations

	11.7 Raw HTML

	12 The counter role

	13 The version, revision roles

	14 The oddeven directive

	15 Mathematics

	16 Hyphenation

	17 Smart Quotes

	18 Sphinx

	19 Extensions

	19.1 Preprocess (-e preprocess)

	19.2 Dotted_TOC (-e dotted_toc)

	20 Developers

	20.1 Guidelines

	21 Initial checkout

	21.1 Git config

	21.2 Pre-commit

	21.3 Continuous Integration

	21.4 Running tests

	21.4.1 Running a single test

	21.4.2 Skipping tests

	22 Licenses

1 Introduction

This document explains how to use rst2pdf. Here is the very short version:

rst2pdf.py mydocument.txt -o mydocument.pdf

That will, as long as mydocument.txt is a valid reStructured Text (rST)
document, produce a file called mydocument.pdf which is a PDF version of
your document.

Of course, that means you just used default styles and settings. If it looks
good enough for you, then you may stop reading this document, because you are
done with it. If you are reading this in a PDF, it was generated using those
default settings.

However, if you want to customize the output, or are just curious to see what
can be done, let's continue.

1.1 Related Reading

As well as the rst2pdf-specific features described in this manual, you many also find it useful to refer to the ReStructuredText manual and information about its directives:

	A ReStructureText Primer: https://docutils.sourceforge.io/docs/user/rst/quickstart.html

	Quick ReStructuredText: https://docutils.sourceforge.io/docs/user/rst/quickref.html

	ReStructuredText Specification: https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html

	ReStructuredText Directives: https://docutils.sourceforge.io/docs/ref/rst/directives.html

2 Command line options

	-h, --help
	Show this help message and exit

	--config=FILE
	Config file to use. Default=~/.rst2pdf/config

	-o FILE, --output=FILE
	Write the PDF to FILE

	-s STYLESHEETS, --stylesheets=STYLESHEETS
	A comma-separated list of custom stylesheets.
Default=""

	--stylesheet-path=FOLDERLIST
	A colon-separated list of folders to search for
stylesheets. Default=""

	-c, --compressed
	Create a compressed PDF. Default=False

	--print-stylesheet
	Print the default stylesheet and exit

	--font-folder=FOLDER
	Search this folder for fonts. (Deprecated)

	--font-path=FOLDERLIST
	A colon-separated list of folders to search for fonts.
Default=""

	--baseurl=URL
	The base URL for relative URLs.

	-l LANG, --language=LANG
	Language to be used for hyphenation and docutils localization.
Default=None

	--header=HEADER
	Page header if not specified in the document.

	--footer=FOOTER
	Page footer if not specified in the document.

	--section-header-depth=N
	Sections up to this dept will be used in the header
and footer's replacement of ###Section###. Default=2

	--smart-quotes=VALUE
	Try to convert ASCII quotes, ellipsis and dashes to
the typographically correct equivalent. Default=0

The possible values are:

	Suppress all transformations. (Do nothing.)

	Performs default SmartyPants transformations: quotes (including backticks-style), em-dashes, and ellipses. "--" (dash dash) is used to signify an em-dash; there is no support for en-dashes.

	Same as --smart-quotes=1, except that it uses the old-school typewriter shorthand for dashes: "--" (dash dash) for en-dashes, "---" (dash dash dash) for em-dashes.

	Same as --smart-quotes=2, but inverts the shorthand for dashes: "--" (dash dash) for em-dashes, and "---" (dash dash dash) for en-dashes.

	--fit-literal-mode=MODE
	What to do when a literal is too wide.
One of error,overflow,shrink,truncate.
Default="shrink"

	--fit-background-mode=MODE
	How to fit the background image to the page. One of
scale, scale_width or center. Default="center"

	--inline-links
	Shows target between parenthesis instead of active link

	--repeat-table-rows
	Repeats header row for each splitted table

	--raw-html
	Support embeddig raw HTML. Default: False

	-q, --quiet
	Print less information.

	-v, --verbose
	Print debug information.

	--very-verbose
	Print even more debug information.

	--version
	Print version number and exit.

	--no-footnote-backlinks
	Disable footnote backlinks. Default: False

	--inline-footnotes
	Show footnotes inline. Default: True

	--default-dpi=NUMBER
	DPI for objects sized in pixels. Default=300

	--show-frame-boundary
	Show frame borders (only useful for debugging).
Default=False

	--disable-splittables
	Don't use splittable flowables in some elements. Only
try this if you can't process a document any other
way.

	-b LEVEL, --break-level=LEVEL
	Maximum section level that starts in a new page. Default: 0

	--first-page-on-right When using double sided pages, the first page will start
	on the right hand side. (Book Style)

	--blank-first-page
	Add a blank page at the beginning of the document.

	--break-side=VALUE
	How section breaks work. Can be "even", and sections
start in an even page,"odd", and sections start in odd
pages, or "any" and sections start in the next page,be
it even or odd. See also the -b option.

	--date-invariant
	Don't store the current date in the PDF. Useful mainly
for the test suite, where we don't want the PDFs to
change.

	-e EXTENSIONS
	Alias for --extension-module

	--extension-module=EXTENSIONS
	Add a helper extension module to this invocation of
rst2pdf (module must end in .py and be on the python
path)

	--custom-cover=FILE
	Template file used for the cover page. Default:
cover.tmpl

	--use-floating-images
	Makes images with :align: attribute work more like in
rst2html. Default: False

	--use-numbered-links
	When using numbered sections, adds the numbers to all
links referring to the section headers. Default: False

	--strip-elements-with-class=CLASS
	Remove elements with this CLASS from the output. Can
be used multiple times.

	--record-dependencies=FILE
	Write output file dependencies to FILE.

3 Configuration File

Since version 0.8, rst2pdf will read (if it is available) configuration files in
/etc/rst2pdf.conf and ~/.rst2pdf/config.

The user's file at ~/.rst2pdf/config will have priority over the system's at
/etc/rst2pdf.conf [1]

[1]
The /etc/rst2pdf.conf location makes sense for Linux and linux-like
systems. if you are using rst2pdf in other systems, please contact me and
tell me where the system-wide config file should be.

Here's an example file showing some of the currently available options:

This is an example config file. Modify and place in ~/.rst2pdf/config

[general]
A comma-separated list of custom stylesheets. Example:
stylesheets="fruity.json,a4paper.json,verasans.json"

stylesheets=""

Create a compressed PDF
Use true/false (lower case) or 1/0
compressed=false

A colon-separated list of folders to search for fonts. Example:
font_path="/usr/share/fonts:/usr/share/texmf-dist/fonts/"

font_path=""

A colon-separated list of folders to search for stylesheets. Example:
stylesheet_path="~/styles:/usr/share/styles"
stylesheet_path=""

Language to be used for hyphenation support

language="en_US"

Default page header and footer
header=null
footer=null

What to do if a literal block is too large. Can be
shrink/truncate/overflow

fit_mode="shrink"

How to adjust the background image to the page.
Can be: "scale" and "center"

fit_background_mode="center"

What is the maximum level of heading that starts in a new page.
0 means no level starts in a new page.

break_level=0

How section breaks work. Can be "even", and sections start in an
even page, "odd", and sections start in odd pages, or "any" and
sections start in the next page, be it even or odd.

break_side="any"

Add a blank page at the beginning of the document

blank_first_page=false

Treat the first page as even (default false, treat it as odd)

first_page_even=false

Smart quotes.
0: Suppress all transformations. (Do nothing.)
1: Performs default SmartyPants transformations: quotes (including ‘‘backticks''
-style), em-dashes, and ellipses. "--" (dash dash) is used to signify an em-dash;
there is no support for en-dashes.
2: Same as 1, except that it uses the old-school typewriter shorthand for
dashes: "--" (dash dash) for en-dashes, "---" (dash dash dash) for em-dashes.
3: Same as 2, but inverts the shorthand for dashes: "--" (dash dash) for
em-dashes, and "---" (dash dash dash) for en-dashes.

smartquotes=0

Footnote backlinks enabled or not (default: enabled)

footnote_backlinks=true

Show footnotes inline instead of at the end of the document

inline_footnotes=false

Cover page template.
It will be searched in the document's folder, in ~/.rst2pdf/templates and
in the templates subfolder of the package folder

custom_cover = cover.tmpl

Use floating images.
Makes the behaviour of images with the :align: attribute more like rst2html's

floating_images = false

Support the ..raw:: html directive
raw_html = false

4 Pipe usage

If no input nor output are provided, stdin and stdout will be used
respectively.

You may want to use rst2pdf in a linux pipe as such:

cat readme.txt | rst2pdf | gzip -c > readme.pdf.gz

or:

curl http://docutils.sourceforge.net/docs/user/rst/quickstart.txt | rst2pdf > quickstart.pdf

If no input argument is provided, stdin will be used:

cat readme.txt | rst2pdf -o readme.pdf

If output is set to dash (-), output goes to stdout:

rst2pdf -o - readme.txt > output.pdf

5 Images

5.1 Inline

You can insert images in the middle of your text like this:

This |biohazard| means you have to run.

.. |biohazard| image:: assets/biohazard.png

This means you have to run.

5.2 Supported Image Types

For raster images, rst2pdf supports anything PIL (The Python Imaging Library)
supports. The exact list of supported formats varies according to your PIL
version and system.

For SVG support, you need to install svglib.

Some features will not work when using these images. For example, gradients will
not display, and text may cause problems depending on font availability.

If you can choose between raster and vectorial images, for non-photographic
images, vector files are usually smaller and look better, specially when
printed.

Note

Image URLs

Attempting to be more compatible with rst2html, rst2pdf will try
to handle images specified as HTTP or FTP URLs by downloading them
to a temporary file and including them in the PDF.

This is probably not a good idea unless you are really sure the image
won't go away.

5.3 Image Size

PDFs are meant to reflect paper. A PDF has a specific size in centimeters or
inches.

Images usually are measured in pixels, which are meaningless in a PDF. To
convert between pixels and inches or centimeters, we use a DPI (dots-per-inch)
value.

For example, 300 pixels, with a 300DPI, are exactly one inch. 300 pixels at
100DPI are 3 inches.

For that reason, to achieve a nice layout of the page, it's usually a good idea
to specify the size of your images in those units, or as a percentage of the
available width and you can ignore all this DPI nonsense ;-)

The rst2pdf default is 300DPI, but you can change it using the --default-dpi
option or the default_dpi setting in the config file.

Examples of images with specified sizes:

.. image:: home.png
 :width: 3in

.. image:: home.png
 :width: 80%

.. image:: home.png
 :width: 7cm

The valid units you can use are: em, ex, px, in, cm, mm,
pt, pc, %, "".

	px: Pixels. If you specify the size using this unit, rst2pdf will convert
it to inches using the default DPI explained above.

	No unit. If you just use a number, it will be considered as pixels.
(IMPORTANT: this used to default to points. It was changed to be more
compatible with rst2html)

	em: This is the same as your base style's font size. By default: 10
points.

	ex: rst2pdf will use the same broken definition as IE: em/2. In truth this
should be the height of the lower-case x character in your base style.

	in: Inches (1 inch = 2.54 cm).

	cm: centimeters (1cm = 0.39 inches)

	mm: millimeters (10mm = 1cm)

	pt: 1/72 inch

	pc: 1/6 inch

	%: percentage of available width in the frame. Setting a percentage as a
height does not work and probably never will.

If you don't specify a size at all, rst2pdf will do its best to figure out what
it should do:

Since there is no specified size, rst2pdf will try to convert the image's pixel
size to inches using the DPI information available in the image itself. You can
set that value using most image editors. For example, using Gimp, it's in the
Image -> Print Size menu.

So, if your image is 6000 pixels wide, and is set to 1200DPI, it will be 5
inches wide.

If your image doesn't have a DPI property set, and doesn't have it's desired
size specified, rst2pdf will arbitrarily decide it should use 300DPI (or
whatever you choose with the --default-dpi option).

6 Styling ReStructuredText

For well-formatted and consistent PDFs, the best starting point is well-formatted and consistent markup. There are some excellent references for ReStructuredText which we won't reproduce here but they are highly recommended as a starting point for working with rst2pdf.

In general, applying a stylesheet to a structured document will output a decent PDF with minimum fuss. That said, there are plenty of customisation and styling options available so read on if that sounds interesting.

6.1 Applying Styles

rst2pdf applies a default set of styles to the document. This default set can be viewed using rst2pdf --print-stylesheet which prints outh rst2pdf/styles/styles.yaml.

Each subsequent style within each style sheet file specified the --stylesheets CLI parameter is then registered in the the list of known styles known to rst2pdf. If the name of the style is already known, then the attributes specified in the style are applied "on top" of the already registered style.

rst2pdf will then resolve the parent style, which is why the order of inclusion matters per-style-name, not globally. That is, if you set the color of bodytext first in a file and then set the color of normal in a subsequent file, then the color you have set for bodytext will be the color used for paragraphs (unless overridden by a class directive. Further information on cereating stylesheet files is available in Creating Stylesheets.

You can style paragraphs with a style using the class directive:

.. class:: special

This paragraph is special.

This one is not.

Multiple styles can be listed and are applied in order where properties in the right hand styles override those to the left:

.. class:: special bluetext redtext

 This paragraph is special and is red.

This one is not.

Or inline styles using custom interpreted roles:

.. role:: redtext

I like color :redtext:`red`.

For more information about this, please check the rST docs, and for style information check the section in this manual on inline styles.

6.2 Headers and Footers

rST supports headers and footers, using the header and footer directive:

.. header::

 This will be at the top of every page.

Often, you may want to put a page number there, or a section name.The following
magic tokens will be replaced (More may be added as rst2pdf evolves):

	###Page###
	Replaced by the current page number.

	###Title###
	Replaced by the document title

	###Section###
	Replaced by the current section title

	###SectNum###
	Replaced by the current section number. Important: You must use the
sectnum directive for this to work.

	###Total###
	Replaced by the total number of pages in the document. Keep in mind that
this is the real number of pages, not the displayed number, so if you
play with page counters this number will probably be wrong.

Headers and footers are visible by default but they can be disabled by specific
Page Templates for example, cover pages. You can also set headers and footers
via command line options or the configuration file.

If you want to do things like "put the page number on the out side of the
page, check The oddeven directive

6.3 Footnotes

Currently rst2pdf doesn't support real footnotes, and converts them to endnotes.
There is a real complicated technical reason for this: I can't figure out a
clean way to do it right.

You can get the same behaviour as with rst2html by specifying
--inline-footnotes, and then the footnotes will appear where you put them
(in other words, not footnotes, but "in-the-middle-of-text-notes" or just plain
notes.)

7 Customizing PDF Output

Stylesheets are used to control many aspects of the PDF output.

	General look and feel, colours, fonts, templates

	Page size

	Syntax highlighting for code

The stylesheets use a YAML format (JSON is also supported). Older versions of this tool used an RSON format; this is also still supported but we recommend you check the section on migrating to yaml stylesheets and update them (it's painless!)

7.1 Using Stylesheets

Specify a stylesheet to use with -s:

rst2pdf mydoc.rst -s mystyles

Often it makes sense to specify multiple stylesheets, for example to set the page size, the main styles, and some syntax highlighting. In that case, use comma-separated values:

rst2pdf mydoc.rst -s a4,mystyles,murphy

Order does matter: rst2pdf applies its own stylesheet first and then the list in given in order, so the last stylesheet in the list will take precedence over the ones that went before.

Styles will always be searched in these places, in order:

	What you specify using --stylesheet_path

	The option stylesheet_path in the config file

	The current folder

	~/.rst2pdf/styles

	The styles folder within rst2pdf's installation folder.

7.2 Included StyleSheets

To make some of the more common adjustments easier, rst2pdf includes a
collection of stylesheets you can use:

	Font styles
	These stylesheets modify your font settings.

	serif uses the PDF serif font (Times) instead of the default Sans
Serif (Arial)

	freetype-sans uses your system's default TrueType Sans Serif font

	freetype-serif uses your system's default TrueType Serif font

	twelvepoint makes the base font 12pt (default is 10pt)

	tenpoint makes the base font 10pt

	eightpoint makes the base font 8pt

	Page layout styles
	These stylesheets modify your page layout.

	twocolumn uses the twoColumn layout as the initial page layout.

	double-sided adds a gutter margin (margin at the "in side" of the pages)

	Page size styles
	Stylesheets that change the paper size.

The usual standard paper sizes are supported: A0, A1, A2,
A3, A4 (default), A5, A6, B0, B1, B2, B3,
B4, B5, B6, Letter, Legal, 11x17

The name of the stylesheet is lowercase.

	Code block styles
	See Syntax Highlighting

So, if you want to have a two-column, legal size, serif document with code in
murphy style:

rst2pdf mydoc.txt -s twocolumn,serif,murphy,legal

7.3 Default Stylesheet

You can make rst2pdf print the default stylesheet:

rst2pdf --print-stylesheet

This makes an excellent starting point for creating a stylesheet. The default one is always included by default, so only the values that should be changed need to be included in the new stylesheet.

7.4 Migrating Stylesheet Format

Historically, (version 0.98 and earlier) rst2pdf had support for JSON and RSON stylesheets. Those stylesheets should still work if you are still using them but a warning will be produced:

[WARNING] styles.py:617 Stylesheet "./example.style" in outdated format, recommend converting to YAML

To update your stylesheet, use the rst2pdf.style2yaml utility:

python3 -m rst2pdf.style2yaml example.style

The command also accepts a list of paths, or wildcards, and by default will output the new stylesheet(s) to stdout. To write them to files instead, use the --save flag with the command above.

7.5 Migrating to the New Default Stylesheet

Historically (version 0.98 and earlier), rst2pdf used a different default style sheet. The updated default style file provide a more modern look to rst2pdf documents. To do this, it updates various spacing, margins and fonts. It also updates page template and font alias names and so you will need to make adjustments to derived style files.

Until you make these adjustments, you can use the historical default style sheet using by adding the rst2pdf-0-9 style using the -s command line switch. For example:

rst2pdf mydoc.rst -s rst2pdf-0-9,mystyle.yaml

7.5.1 Updated Font Alias Names

The font aliases used for the standard fonts have changed from those used in the historical default style sheeet. As such, you will need to update to the new names in any derivative style files.

This table shows the old name and the equivalent new name:

	Historical
	Current

	stdFont
	fontSerif

	stdSerif
	fontSerif

	stdBold
	fontSerifBold

	stdBoldItalic
	fontSerifBoldItalic

	stdItalic
	fontSerifItalic

	stdMono
	fontMono

	stdMonoBold
	fontMonoBold

	stdMonoBoldItalic
	fontMonoBoldItalic

	stdMonoItalic
	fontMonoItalic

	stdSans
	fontSans

	stdSansBold
	fontSansBold

	stdSansBoldItalic
	fontSansBoldItalic

	stdSansItalic
	fontSansItalic

7.5.2 Updated Pate Template Names

The page template names used in the new default style sheet are different from the historical default style sheeet. As such, you will need to update to the new names in any derivative style files.

This table shows the old name and the equivalent new name:

	Historical
	Current

	–
	mainPage

	cutePage
	decoratedPage

	emptyPage
	emptyPage

	oneColumn
	oneColumn

	twoColumn
	Move to separate twocolumn template file

	threeColumn
	–

Note that firstTemplate is now mainPage. Historically, it was oneColumn.

8 Creating Stylesheets

The stylesheets are YAML-formatted and give control over many aspects of how the PDF is rendered. The main aspects are the styles of the elements, the page setup and templates, and the fonts to use . These are described in the following sections.

Only the settings that you want to change need to be included so for example, this would be a valid stylesheet:

pageSetup:
 size: A5
fontsAlias:
 fontSerif: Times-Roman
styles:
 normal:
 fontSize: 14

8.1 Styles in Detail

At the top level there is a bit of an outlier: linkColor. You can specify any color name or a hex value:

linkColor: #330099

Most of the other elements for colours and formatting are in the styles section.

There are particular styles which have great effect, they are base,
normal and bodytext.

Here's an example, the twelvepoint stylesheet:

styles:
 base:
 fontSize: 12

Since all other styles inherit base, changing the fontSize changes the
fontSize for everything in your document.

The normal style is meant for most elements, so usually it's the same as
changing base.

The bodytext style is for elements that form paragraphs. So, for example,
you can set your document to be left-aligned like this:

styles:
 - bodytext:
 alignment: TA_LEFT

There are elements, however, that don't inherit from bodytext, for example
headings and the styles used in the table of contents. Those are elements that
are not real paragraphs, so they should not follow the indentation and spacing
you use for your document's main content.

The heading style is inherited by all sorts of titles: section titles, topic
titles, admonition titles, etc.

If your document requires a style that is not defined in your stylesheet, it
will print a warning and use bodytext instead.

Also, the order of the styles is important: if styleA is the parent of
styleB, styleA should be earlier in the stylesheet.

8.2 Style Elements

Within the styles element, it is possible to configure each element type.
The following section lays out the known options and examples of how to use them.
(This list is known to be incomplete, we're working on it and accept any
additions you have).

parent

Each style property can inherit from another, for example the code style inherits from the literal style which sets the font used for fixed-width text throughout the document.

Example:

code:
 parent: literal

fontName

The name of the font to use for this type of element. It can be either the name
of a font on your system, or one of the aliased fonts. The default is Helvetica
as shown in the example here.

Example:

fontName: Helvetica

See also:

	Font Alias

	Fonts

fontSize

Use either a number (meaning point size) or a percentage. The default size for
bodytext is 10.

Example:

fontSize: 150%

leftIndent and rightIndent

Example:

leftIndent: 0
rightIndent: 0

firstLineIndent

Example:

firstLineIndent: 0

alignment

The paragraph justification of the text. The values TA_LEFT and TA_RIGHT can be used.

Example:

alignment: TA_LEFT

spaceBefore and spaceAfter

The amount of vertical space included before or after an element. Especially useful when working with bullet-list and bullet-list-item elements.

Example:

spaceBefore: 4
spaceAfter: 8

bullet -related styles

The bullets can be complex to style, but there are some tricks that might help. The vertical space before and after the list and item elements are controlled by the spaceBefore and spaceAfter properties. Also these lists are tables so those styles also apply.

Example:

bulletFontName: Helvetica
bulletFontSize: 10
bulletText: "\u2022"
bulletIndent: 0

See also:

	Table Styles

textColor

Use either a color name, or a hex value including the # character at the start.

Example:

textColor: black

backColor

Use either the value None, a color name, or a hex value including the # character at the start. Sets the background color of the element.

Example:

backColor: beige

wordWrap

Can be set to None.

Example:

wordWrap: None

border -related styles

Setting and styling the border for an element. The example is from the default code block style.

Example:

borderColor: darkgray
borderPadding: 6
borderWidth: 0.5
borderRadius: None

allowWidows and allowOrphans

These directives are passed to ReportLab if they are present. Currently only implemented for paragraph styles.

Example:

allowWidows: 5
allowOrphans: 4

See also:

	Widows and Orphans

margin -related styles

This sets the margins of the element. On the pageSetup itself, you can use margin-gutter. That's the
margin in the center of a two-page spread. This value is added to the left margin of odd pages and the right margin of even pages, adding (or removing, if it's negative) space "in the middle" of opposing pages. If you intend to bound a printed copy, you may need extra space there. OTOH, if you will display it on-screen on a two-page format (common in many PDF readers, nice for ebooks), a negative value may be pleasant.

Example:

margin-top: 2cm
margin-bottom: 2cm
margin-left: 2cm
margin-right: 2cm
margin-gutter: 0cm

8.2.1 Inline Styles

The following are the only attributes that work on styles when used for
interpreted roles (inline styles):

	fontName

	fontSize

	textColor

	backColor

8.2.2 Lists

Styling lists is mostly a matter of spacing and indentation.

The space before and after a list is taken from the item-list and
bullet-list styles:

styles:
 item-list
 parent: bodytext
 spaceBefore: 0
 commands:
 - - VALIGN: [[0, 0], [-1, -1]]
 - TOP
 - - RIGHTPADDING: [[0, 0], [1, -1], 0]
 colWidths:
 - 20pt
 - bullet-list
 parent: bodytext
 spaceBefore: 0
 commands:
 - - VALIGN: [[0, 0], [-1, -1]]
 - TOP
 - - RIGHTPADDING: [[0, 0], [1, -1], 0]
 colWidths:
 - '20'

Yes, these are table styles, because they are implemented as tables. The
RIGHTPADDING command and the colWidths option can be used to adjust the
position of the bullet/item number.

To control the separation between items, you use the item-list-item and
bullet-list-item styles' spaceBefore and spaceAfter options. For
example:

bullet-list-item:
 parent: bodytext
 spaceBefore: 20

Remember that this is only used between items and not before the first or
after the last items.

8.3 Page Layout

There are some layouts available as standard stylesheets, but it is likely that you will also want to describe your own templates.

8.3.1 Page Setup

In your stylesheet, the pageSetup element controls your page layout.

Here's the default stylesheet's element:

pageSetup:
 size: A4
 width:
 height:
 margin-top: 2cm
 margin-bottom: 2cm
 margin-left: 2cm
 margin-right: 2cm
 spacing-header: 5mm
 spacing-footer: 5mm
 margin-gutter: 0cm

Size is one of the standard paper sizes, like A4 or LETTER.

Here's a list: A0, A1, A2, A3, A4, A5, A6, B0,
B1, B2, B3, B4, B5, B6, LETTER, LEGAL,
ELEVENSEVENTEEN.

If you want a non-standard size, set size to null and use width and height. When specifying width, height or margins, you need to use units, like inch (inches) or cm (centimeters). For example, a slide deck in a 16:9 ratio can be created as a document with width 32cm and height 18cm:

pageSetup:
 size: null
 width: 32cm
 height: 18cm

When both width/height and size are specified, size will be used, and
width/height ignored.

8.3.2 Page Templates

By default, your document will have a single column of text covering the space
between the margins. You can change that, though, in fact you can do so even in
the middle of your document!

To do it, you need to define Page Templates in your stylesheet. The default
stylesheet already has three of them:

pageTemplates:
 coverPage:
 frames:
 - [0cm, 0cm, 100%, 100%]
 showHeader: false
 showFooter: false
 oneColumn:
 frames:
 - [0cm, 0cm, 100%, 100%]
 twoColumn:
 frames:
 - [0cm, 0cm, 49%, 100%]
 - [51%, 0cm, 49%, 100%]

A page template has a name (oneColumn, twoColumn), some options, and a
list of frames. A frame is a list containing this:

[left position, bottom position, width, height, left padding, bottom padding, right padding, top padding]

All the padding values are optional and default to 6 points.

For example, this defines a frame "at the very left", "at the very bottom", "a
bit less than half a page wide" and "as tall as possible":

["0cm", "0cm", "49%", "100%"]

And this means "the top third of the page":

["0cm", "66.66%", "100%", "33.34%"]

You can use all the usual units, cm, mm, inch, and %, which
means "percentage of the page (excluding margins and headers or footers)". Using
% is probably the smartest for columns and gives you a fluid layout, while
the other units are better for more "fixed" elements.

Since we can have more than one template, there is a way to specify which one we
want to use, and a way to change from one to another.

To specify the first template, do it in your stylesheet, in pageSetup
(oneColumn is the default):

pageSetup:
 firstTemplate: oneColumn

Then, to change to another template, in your document use this syntax (will
change soon, though):

.. raw:: pdf

 PageBreak twoColumn

That will trigger a page break, and the new page will use the twoColumn
template.

You can see an example of this in the Montecristo folder in the source
package.

The supported page template options and their defaults are:

	showHeader : True

	defaultHeader : None

Has the same effect as the header directive in the document.

	showFooter : True

	defaultFooter : None

Has the same effect as the footer directive in the document.

	background: None

The background should be an image, which will be centered in your page or
stretched to match your page size, depending on the --fit-background-mode
option, so use with caution.

8.4 Font Alias

This is the fontsAlias element. By default, it uses some of the standard PDF
fonts:

fontsAlias:
 fontSerif: Helvetica
 fontSerifBold: Helvetica-Bold
 fontSerifItalic: Helvetica-Oblique
 fontSerifBoldItalic: Helvetica-BoldOblique
 fontMono: Courier

This defines the fonts used in the styles. You can use, for example, Helvetica
directly in a style, but if later you want to use another font all through
your document, you will have to change it in each style. So, I suggest you
use aliases.

More information in the dedicated Fonts section.

8.5 Widows and Orphans

	Widow
	A paragraph-ending line that falls at the beginning of the following
page/column, thus separated from the remainder of the text.

	Orphan
	A paragraph-opening line that appears by itself at the bottom of a page/column.

rst2pdf has some widow/orphan control. Specifically, here's what's currently
implemented:

On ordinary paragraphs, allowWidows and allowOrphans is passed to
reportlab, which is supposed to do something about it if they are non-zero. In
practice, it doesn't seem to have much effect.

The plan is to change the semantics of those settings, so that they mean the
minimum number of lines that can be left alone at the beginning of a page
(widows) or at the end (orphans).

Currently, these semantics only work for literal blocks and code blocks.

A literal block::

 This is a literal block.

A code block:

.. code-block:: python

 def x(y):
 print y**2

In future versions this may extend to ordinary paragraphs.

8.6 Table Styles

These are a few extra options in styles that are only used when the style is
applied to a table. This happens in two cases:

	You are using the class directive on a table:

.. class:: thick

+-------+---------+
| A | B |
+-----------------+

	It's a style that automatically applies to something that is drawn using a
table. Currently these include:

	Footnotes / endnotes (endnote style)

	Lists (item-list, bullet-list, option-list and field-list styles)

The options are as follows:

	Commands
	For a full reference of these, please check the Reportlab User Guide
specifically the TableStyle Commands section (section 7.4 in the manual
for version 2.3)

Here, however, is a list of the possible commands:

BOX (or OUTLINE)
FONT
FONTNAME (or FACE)
FONTSIZE (or SIZE)
GRID
INNERGRID
LEADING
LINEBELOW
LINEABOVE
LINEBEFORE
LINEAFTER
TEXTCOLOR
ALIGNMENT (or ALIGN)
LEFTPADDING
RIGHTPADDING
BOTTOMPADDING
TOPPADDING
BACKGROUND
ROWBACKGROUNDS
COLBACKGROUNDS
VALIGN

Each takes as argument a couple of coordinates, where (0,0) is top-left,
and (-1,-1) is bottom-right, and 0 or more extra arguments.

For example, INNERGRID takes a line width and a color:

["INNERGRID", [0, 0], [-1, -1], 0.25, "black"],

That would mean "draw all lines inside the table with .25pt black"

	colWidths
	A list of the column widths you want, in the unit you prefer (default unit is
pt).

Example:

"colWidths": ["3cm",null]

If your colWidths has fewer values than columns in your table, the rest
are auto-calculated. A column width of null means "guess".

If you don't specify column widths, the table will try to look proportional
to the restructured text source.

Note

The command option used for table styles is not kept across stylesheets.
For example, the default stylesheet defines endnote with this command list:

"commands": [["VALIGN", [0, 0], [-1, -1], "TOP"]]

If you redefine endnote in another stylesheet and use this to create a
vertical line between the endnote's columns:

"commands": [["LINEAFTER", [0, 0], [1, -1], .25, "black"]]

Then the footnotes will not have VALIGN TOP!

To do that, you MUST use all commands in your stylesheet:

"commands": [
 ["VALIGN", [0, 0], [-1, -1], "TOP"],
 ["LINEAFTER", [0, 0], [1, -1], .25, "black"]
]

9 Syntax Highlighting

rst2pdf adds a non-standard directive, called code-block, which produces
syntax highlighted for many languages using Pygments.

For example, if you want to include a Python fragment:

.. code-block:: python

 def myFun(x,y):
 print x+y

def myFun(x,y):
 print x+y

Notice that you need to declare the language of the fragment. Here's a list of
the currently supported.

You can use the linenos option to display line numbers:

1 def myFun(x,y):
2 print x+y

You can use the hl_lines option to emphasize certain lines by dimming the
other lines. This parameter takes a space separated list of line numbers. The
other lines are then styled with the class pygments_diml that defaults to
gray. For example, to highlight print "line a" and print "line b":

def myFun(x,y):
 print "line a"
 print "line b"
 print "line c"

rst2pdf includes several stylesheets for highlighting code:

	abap

	algol_nu

	algol

	arduino

	autumn

	borland

	bw

	colorful

	default

	emacs

	friendly

	fruity

	igor

	lovelace

	manni

	monokai

	murphy

	native

	paraiso-dark

	paraiso-light

	pastie

	perldoc

	rainbow_dash

	rrt

	sas

	solarized-dark

	solarized-light

	sphinx

	stata-dark

	stata-light

	stata

	styles

	tango

	trac

	vim

	vs

	xcode

You can use any of them instead of the default by adding, for example, a -s murphy to the command line.

If you already are using a custom stylesheet, use both:

rst2pdf mydoc.rst -o mydoc.pdf -s mystyle.json,murphy

The default is the same as emacs.

There is an online demo of pygments showing these styles:

http://pygments.org/demo/1817/

The overall look of a code box is controlled by the "code" style or by a class
you apply to it using the .. class:: directive. Additionally, if you want
to change some properties when using different languages, you can define styles
with the name of the language. For example, a python style will be applied
to code blocks created with .. code-block:: python.

The look of the line numbers is controlled by the linenumbers style.

As rst2pdf is written in Python, let's see some examples and variations around
Python.

Python in console

>>> my_string="python is great"
>>> my_string.find('great')
10
>>> my_string.startswith('py')
True

Python traceback

Traceback (most recent call last):
 File "error.py", line 9, in ?
 main()
 File "error.py", line 6, in main
 print call_error()
 File "error.py", line 2, in call_error
 r = 1/0
ZeroDivisionError: integer division or modulo by zero
Exit 1

The code-block directive supports many options, that mirror Pygments':

FIXME: fix this to really explain them all. This is a placeholder.

 'stripnl' : string_bool,
 'stripall': string_bool,
 'ensurenl': string_bool,
 'tabsize' : directives.positive_int,
 'encoding': directives.encoding,
 # Lua
 'func_name_hightlighting':string_bool,
 'disabled_modules': string_list,
 # Python Console
 'python3': string_bool,
 # Delphi
 'turbopascal':string_bool,
 'delphi' :string_bool,
 'freepascal': string_bool,
 'units': string_list,
 # Modula2
 'pim' : string_bool,
 'iso' : string_bool,
 'objm2' : string_bool,
 'gm2ext': string_bool,
 # CSharp
 'unicodelevel' : csharp_unicodelevel,
 # Literate haskell
 'litstyle' : lhs_litstyle,
 # Raw
 'compress': raw_compress,
 # Rst
 'handlecodeblocks': string_bool,
 # Php
 'startinline': string_bool,
 'funcnamehighlighting': string_bool,
 'disabledmodules': string_list,

You can find more information about them in the pygments manual.

9.1 File inclusion

You can use the code-block directive with an external file, using the
:include: option:

.. code-block:: python
 :include: setup.py

This will give a warning if setup.py doesn't exist or can't be opened.

9.1.1 Include with Boundaries

You can add selectors to limit the inclusion to a portion of the file.
The options are:

	:start-at: string
	will include file beginning at the first occurrence of string, string
included

	:start-after: string
	will include file beginning at the first occurrence of string, string
excluded

	:end-before: string
	will include file up to the first occurrence of string, string excluded

	:end-at: string
	will include file up to the first occurrence of string, string included

Let's display a class from rst2pdf:

.. code-block:: python
 :include: assets/flowables.py
 :start-at: class Separation(Flowable):
 :end-before: class Reference(Flowable):

This command gives

class Separation(Flowable):
 """A simple <hr>-like flowable"""

 def wrap(self, w, h):
 self.w = w
 return w, 1 * cm

 def draw(self):
 self.canv.line(0, 0.5 * cm, self.w, 0.5 * cm)

9.1.2 Options

	linenos
	Display line numbers along the code

	linenos_offset
	If you include a file and are skipping the beginning, using the
linenos_offset makes the line count start from the real line number,
instead of 1.

10 Fonts

Working with fonts on many different platforms is a challenge. Here you will find the best information we have, but questions and updates are always welcome.

10.1 Standard PDF Fonts

The standard PDF fonts are always available, here is the list:

	Times_Roman

	Times-Bold

	Times-Italic

	Times-Bold-Italic

	Helvetica

	Helvetica_Bold

	Helvetica-Oblique

	Helvetica-Bold-Oblique

	Courier

	Courier-Bold

	Courier-Oblique

	Courier-Bold-Oblique

	Symbol

	Zapf-Dingbats

10.2 Font Embedding

There are thousands of excellent free True Type and Type 1 fonts available on
the web, and you can use many of them in your documents by declaring them in
your stylesheet.

10.2.1 The Easy Way

Just use the font name in your style. For example, you can define this:

normal:
 fontName: fonty

And then it may work.

What would need to happen for this to work?

10.2.1.1 Fonty is a True Type font:

	You need to have it installed in your system, and have the fc-match
utility available (it's part of fontconfig). You can test if it is
so by running this command:

$ fc-match fonty
fonty.ttf: "Fonty" "Normal"

If you are in Windows, I need your help ;-) or you can use The Harder Way (True Type)

	The folder where fonty.ttf is located needs to be in your font path. You
can set it using the --font-path option. For example:

rst2pdf mydoc.txt -s mystyle.style --font-path /usr/share/fonts

You don't need to put the exact folder, just something that is above it.
In my own case, fonty is in /usr/share/fonts/TTF

Whenever a font is embedded, you can refer to it in a style by its name, and to
its variants by the aliases Name-Oblique, Name-Bold,
Name-BoldOblique.

10.2.1.2 Fonty is a Type 1 font:

You need it installed, and the folders where its font metric (.afm) and
binary (.pfb) files are located need to be in your font fath.

For example, the "URW Palladio L" font that came with my installation of TeX
consists of the following files:

/usr/share/texmf-dist/fonts/type1/urw/palatino/uplb8a.pfb
/usr/share/texmf-dist/fonts/type1/urw/palatino/uplbi8a.pfb
/usr/share/texmf-dist/fonts/type1/urw/palatino/uplr8a.pfb
/usr/share/texmf-dist/fonts/type1/urw/palatino/uplri8a.pfb
/usr/share/texmf-dist/fonts/afm/urw/palatino/uplb8a.afm
/usr/share/texmf-dist/fonts/afm/urw/palatino/uplbi8a.afm
/usr/share/texmf-dist/fonts/afm/urw/palatino/uplr8a.afm
/usr/share/texmf-dist/fonts/afm/urw/palatino/uplri8a.afm

So, I can use it if I put /usr/share/texmf-dist/fonts in my font path:

rst2pdf mydoc.txt -s mystyle.style --font-path /usr/share/texmf-dist/fonts

And putting this in my stylesheet, for example:

title:
 fontName: URWPalladioL-Bold

There are some standard aliases defined so you can use other names:

'ITC Bookman' : 'URW Bookman L',
'ITC Avant Garde Gothic' : 'URW Gothic L',
'Palatino' : 'URW Palladio L',
'New Century Schoolbook' : 'Century Schoolbook L',
'ITC Zapf Chancery' : 'URW Chancery L'

So, for example, you can use Palatino or New Century SchoolBook-Oblique
And it will mean URWPalladioL or CenturySchL-Ital, respectively.

Whenever a font is embedded, you can refer to it in a style by its name, and to
its variants by the aliases Name-Oblique, Name-Bold, Name-BoldOblique.

10.2.2 The Harder Way (True Type)

The stylesheet has an element is embeddedFonts that handles embedding True
Type fonts in your PDF. Usually, it's empty, because with the default styles you
are not using any font beyond the standard PDF fonts:

embeddedFonts: []

The embeddedFonts element is a list of the font files that you want to embed
into your PDF document. For each font, you provide the filenames of the four
variants of the file (normal, bold, italic, bold italic).

For example, suppose you want to use the nice public domain Tuffy font, then
you need to give the filenames of all variants:

embeddedFonts:
 - [Tuffy.ttf, Tuffy_Bold.ttf, Tuffy_Italic.ttf, Tuffy_Bold_Italic.ttf]

This will provide your styles with fonts called Tuffy, Tuffy_Bold and so
on. They will be available with the names based on the filenames
(Tuffy_Bold) and also by standard aliases similar to those of the standard
PDF fonts (Tuffy-Bold, Tuffy-Oblique, Tuffy-BoldOblique, etc..)

Now, if you use italics in a paragraph whose style uses the Tuffy font, it
will use Tuffy_Italic. That's why it's better if you use fonts that provide
the four variants, and that you lsit them in the correct order.

If your font lacks a variant, use the "normal" variant instead.

For example, if you only had Tuffy.ttf:

embeddedFonts:
 - [Tuffy.ttf, Tuffy.ttf, Tuffy.ttf, Tuffy.ttf]

However, that means that italics and bold in styles using Tuffy will not work
correctly (they will display as regular text).

If you want to use this as the base font for your document, you should change
the fontsAlias section accordingly. For example:

fontsAlias:
 fontSans: Tuffy
 fontSansBoldfontSansBold: Tuffy_Bold
 fontSansItalic: Tuffy_Italic
 fontSansBoldItalic: Tuffy_Bold_Italic
 fontMono: Courier

If, on the other hand, you only want a specific style to use the Tuffy font,
don't change the fontAlias but rather set the fontName properties for
that style. For example:

heading1:
 parent: normal
 fontName: Tuffy_Bold
 fontSize: 18
 keepWithNext: true
 spaceAfter: 6

By default, rst2pdf will search for the fonts in its fonts folder and in the
current folder. You can make it search another folder by passing the
--font-folder option, or you can use absolute paths in your stylesheet.

11 Raw Directive

11.1 Raw PDF

rst2pdf has a very limited mechanism to pass commands to reportlab, the PDF
generation library. You can use the raw directive to insert pagebreaks and
spacers (other reportlab flowables may be added if there's interest), and set
page transitions.

The syntax is shell-like, here's an example:

One page

.. raw:: pdf

 PageBreak background=images/background.jpg fit-background-mode=scale

Another page. Now some space:

.. raw:: pdf

 Spacer 0,200
 Spacer 0 200

And another paragraph.

The unit used by the spacer by default is points, and using a space or a comma
is the same thing in all cases.

11.2 Page Counters

In some documents, you may not want your page counter to start in the first
page.

For example, if the first pages are a coverpage and a table of contents, you
want page 1 to be where your first section starts.

To do that, you have to use the SetPageCounter command.

Here is a syntax example:

.. raw:: pdf

 SetPageCounter 0 lowerroman

This sets the counter to 0, and makes it display in lower roman characters (i,
ii, iii, etc) which is a style often used for the pages before the document
proper (for example, TOCs and abstracts).

It can take zero or two arguments.

	SetPageCounter
	When used with no arguments, it sets the counter to 0, and the style to
arabic numerals.

	SetPageCounter number style
	When used with two arguments, the first argument must be a number, it sets
the page counter to that number.

The second number is a style of counter. Valid values are:

	lowerroman: i, ii, iii, iv, v ...

	roman: I, II, III, IV, V ...

	arabic: 1, 2, 3, 4, 5 ...

	loweralpha: a, b, c, d, e ... [Don't use for numbers above 26]

	alpha: A, B, C, D, E ... [Don't use for numbers above 26]

Note

Page counter changes take effect on the current page.

11.3 Page Breaks

There are three kinds of page breaks:

	PageBreak
	Break to the next page

	EvenPageBreak
	Break to the next even numbered page

	OddPageBreak
	Break to the next odd numbered page

Each of them can take an optional argument which is the name of the next page template. For example:

PageBreak twoColumn

In addition, two additional attributes are supported: background and fit-background-mode. These allow
setting the background image for this page and how to fit it (One of scale, scale_width or center). For example:

PageBreak mainPage background="images/background.jpg"

or:

PageBreak background=images/background.jpg fit-background-mode=scale

11.4 Frame Breaks

If you want to jump to the next frame in the page (or the next page if the
current frame is the last), you can use the FrameBreak command. It takes an
optional height in points, and then it only breaks the frame if there is less
than that vertical space available.

For example, if you don't want a paragraph to begin if it's less than 50 points
from the bottom of the frame:

.. raw:: pdf

 FrameBreak 50

This paragraph is so important that I don't want it at the very bottom of
the page...

11.5 Page Transitions

Page transitions are effects used when you change pages in Presentation or
Full Screen mode (depends on the viewer). You can use it when creating a
presentation using PDF files.

The syntax is this:

.. raw:: pdf

 Transition effect duration [optional arguments]

The optional arguments are:

	direction
	Can be 0,90,180 or 270 (top,right,bottom,left)

	dimension
	Can be H or V

	motion
	Can be I or O (Inside or Outside)

The effects with their arguments are:

	Split duration direction motion

	Blinds duration dimension

	Box duration motion

	Wipe duration direction

	Dissolve duration

	Glitter duration direction

For example:

.. raw:: pdf

 Transition Glitter 3 90

Uses the Glitter effect, for 3 seconds, at direction 90 degrees (from the
right?)

Keep in mind that Transition sets the transition from this page to the
next so the natural thing is to use it before a PageBreak:

.. raw:: pdf

 Transition Dissolve 1
 PageBreak

11.6 Text Annotations

Text annotations are meta notes added to a page.

The syntax is this:

.. raw:: pdf

 TextAnnotation "text to add" [optional position]

The optional position is a set of 4 numbers for x_begin, y_begin`, ``x_end and y_end

11.7 Raw HTML

If you have a document that contains raw HTML, and have xhtml2pdf installed,
rst2pdf will try to render that HTML inside your document. To enable this,
use the --raw-html command line option.

12 The counter role

Note

The counter role only works in PDF, if you're reading the HTML version of
the manual then this section is broken. Sorry :/

This is a nonstandard interpreted text role, which means it will only work with
rst2pdf. It implements an unlimited number of counters you can use in your
text. For example, you could use it to have numbered figures, or numbered
tables.

The syntax is this:

Start a counter called seq1 that starts from 1: :counter:`seq1`
Now this should print 2: :counter:`seq1`

You can start counters from any number (this prints 12): :counter:`seq2:12`

And have any number of counters with any name: :counter:`figures`

So ``#seq1-2`` should link to `the number 2 above <#seq1-2>`_

The output is:

Start a counter called seq1 that starts from 1: Now this should
print 2:

You can start counters from any number (this prints 12):

And have any number of counters with any name:

Also, the counters create targets for links with this scheme:
#countername-number.

So #seq1-2 should link to the number 2 above

13 The version, revision roles

Note

These are non-standard roles, which means they will only work with rst2pdf
and not with rst2html or any other docutils tools.

The version and revision roles can be used to get the version and
revision of an installed Python package. For example:

Welcome to rst2pdf :version:`rst2pdf` (:revision:`rst2pdf`)!

Important

The package in question must be installed in the same environment that you
are running rst2pdf in.

14 The oddeven directive

This is a nonstandard directive, which means it will only work with rst2pdf, and
not with rst2html or any other docutils tool.

The contents of oddeven should consist of exactly two things (in this case,
two paragraphs). The first will be used on odd pages, and the second one on even
pages.

If you want to use more complex content, you should wrap it with containers,
like in this example:

.. oddeven::

 .. container::

 This will appear on odd pages.

 Both paragraphs in the container are for odd pages.

 This will appear on even pages. It's a single paragraph, so no need for
 containers.

This directive has several limitations.

	I intentionally have disabled splitting into pages for this, because I have
no idea how that could make sense. That means that if its content is larger
than a frame, you will make rst2pdf barf with one of those ugly errors.

	It will reserve the space of the larger of the two sets of contents. So if
one is small and the other large, it will look wrong. I may be able to
fix this though.

	If you try to generate HTML (or anything other than a PDF via rst2pdf) from a
file containing this, it will not do what you want.

15 Mathematics

If you have Matplotlib installed, rst2pdf supports a math role and a math
directive. You can use them to insert formulae and mathematical notation in your
documents using a subset of LaTeX syntax, but doesn't require you have LaTeX
installed.

For example, here's how you use the math directive:

.. math::

 \frac{2 \pm \sqrt{7}}{3}

And here's the result:

(2±√(7))/(3)

If you want to insert mathematical notation in your text like this: π
that is the job of the math role:

This is :math:`\pi`

Produces: This is π

Note that while the math directive embeds fonts and draws your formula as text,
the math role embeds an image. That means:

	You can't copy the text of inline math

	Inline math will look worse when printed, or make your file larger.

So, use it only in emergencies ;-)

You don't need to worry about fonts, the correct math fonts will be used and
embedded in your PDF automatically (they are included with matplotlib).

For an introduction to LaTeX syntax, see the "Typesetting Mathematical Formulae"
chapter in "The Not So Short Introduction to LaTeX 2e" at https://tobi.oetiker.ch/lshort/lshort.pdf

Basically, the inline form a^2 is similar to the math role, and the
display form is similar to the math directive.

16 Hyphenation

If you want good looking documents, you want to enable hyphenation.

To do it, you first need to install the pyphen python module.

Then, you need to specify the language in each style that you want hyphenation
to work. To have hyphenation in the whole document, you can do it in the
base style.

For example, for an English document, hyphenation can be turned on for the whole
document with:

base:
 hyphenationLang: en-US
 embeddedHyphenation: 1

Notice the embeddedHyphenation option. It is optional, but it makes so that
hyphenations will give preference to splitting words at embedded hyphens in the
text.

If you are creating a multilingual document, you can declare styles with
specific languages. For example, you could inherit bodytext for Spanish:

bodytext_es:
 parent: bodytext
 hyphenationLang: es-ES
 embeddedHyphenation: 1

And all paragraphs declared using the bodytext_es style would have Spanish
hyphenation:

.. class:: bodytext_es

Debo a la conjunción de un espejo y de una enciclopedia el descubrimiento de Uqbar.
El espejo inquietaba el fondo de un corredor en una quinta de la calle Gaona,
en Ramos Mejía; la enciclopedia falazmente se llama *The Anglo-American Cyclopaedía*
(New York, 1917) y es una reimpresión literal, pero también morosa, de la
Encyclopaedia Britannica de 1902.

If you want to disable hyphenation in a style that inherits hyphenationLang
from its parent, you can do so by setting hyphenationLang to 0.

17 Smart Quotes

Quoted from the smartypants documentation:

This feature can perform the following transformations:

Straight quotes (" and ') into "curly" quote HTML entities

Backticks-style quotes (``like this'') into "curly" quote HTML entities

Dashes (-- and ---) into en- and em-dash entities

Three consecutive dots (... or . . .) into an ellipsis entity

This means you can write, edit, and save your posts using plain old ASCII
straight quotes, plain dashes, and plain dots, but your published posts (and
final PDF output) will appear with smart quotes, em-dashes, and proper
ellipses.

You can enable this by passing the --smart-quotes option in the command
line. By default, it's disabled. Here are the different values you can use
(again, from the smartypants docs):

	0
	Suppress all transformations. (Do nothing.)

	1
	Performs these transformations: quotes
(including ``backticks'' -style), em-dashes, and ellipses.
"--" (dash dash) is used to signify an em-dash; there is no
support for en-dashes.

	2
	Same as smarty_pants="1", except that it uses the old-school
typewriter shorthand for dashes: "--" (dash dash) for en-dashes,
"---" (dash dash dash) for em-dashes.

	3
	Same as smarty_pants="2", but inverts the shorthand for dashes:
"--" (dash dash) for em-dashes, and "---" (dash dash dash)
for en-dashes.

Currently, even if you enable it, this transformation will only take place in
regular paragraphs, titles, headers, footers and block quotes.

18 Sphinx

Sphinx is a very popular tool. This is the description from its website:

Sphinx is a tool that makes it easy to create intelligent and beautiful
documentation, written by Georg Brandl and licensed under the BSD license.

It was originally created to translate the new Python documentation, and it
has excellent support for the documentation of Python projects, but other
documents can be written with it too.

rst2pdf includes an experimental PDF extension for Sphinx.

To use it in your existing Sphinx project you need to do the following:

	Add rst2pdf.pdfbuilder to extensions in your conf.py. For
example:

extensions = ['sphinx.ext.autodoc','rst2pdf.pdfbuilder']

	Add the PDF options at the end of conf.py, adapted to your project:

-- Options for PDF output --

Grouping the document tree into PDF files. List of tuples
(source start file, target name, title, author, options).
#
If there is more than one author, separate them with \\.
For example: r'Guido van Rossum\\Fred L. Drake, Jr., editor'
#
The options element is a dictionary that lets you override
this config per-document. For example:
#
('index', 'MyProject', 'My Project', 'Author Name', {'pdf_compressed': True})
#
would mean that specific document would be compressed
regardless of the global 'pdf_compressed' setting.

pdf_documents = [
 ('index', 'MyProject', 'My Project', 'Author Name'),
]

A comma-separated list of custom stylesheets. Example:
pdf_stylesheets = ['sphinx', 'a4']

A list of folders to search for stylesheets. Example:
pdf_style_path = ['.', '_styles']

Create a compressed PDF
Use True/False or 1/0
Example: compressed=True
pdf_compressed = False

A colon-separated list of folders to search for fonts. Example:
pdf_font_path = ['/usr/share/fonts', '/usr/share/texmf-dist/fonts/']

Language to be used for hyphenation support
pdf_language = "en_US"

Mode for literal blocks wider than the frame. Can be
overflow, shrink or truncate
pdf_fit_mode = "shrink"

Section level that forces a break page.
For example: 1 means top-level sections start in a new page
0 means disabled
pdf_break_level = 0

When a section starts in a new page, force it to be 'even', 'odd',
or just use 'any'
pdf_breakside = 'any'

Insert footnotes where they are defined instead of
at the end.
pdf_inline_footnotes = True

verbosity level. 0 1 or 2
pdf_verbosity = 0

If false, no index is generated.
pdf_use_index = True

If false, no modindex is generated.
pdf_use_modindex = True

If false, no coverpage is generated.
pdf_use_coverpage = True

Name of the cover page template to use
pdf_cover_template = 'sphinxcover.tmpl'

Documents to append as an appendix to all manuals.
pdf_appendices = []

Enable experimental feature to split table cells. Use it
if you get "DelayedTable too big" errors
pdf_splittables = False

Set the default DPI for images
pdf_default_dpi = 72

Enable rst2pdf extension modules
pdf_extensions = []

Page template name for "regular" pages
pdf_page_template = 'cutePage'

Show Table Of Contents at the beginning?
pdf_use_toc = True

How many levels deep should the table of contents be?
pdf_toc_depth = 9999

Add section number to section references
pdf_use_numbered_links = False

Background images fitting mode
pdf_fit_background_mode = 'scale'

Repeat table header on tables that cross a page boundary?
pdf_repeat_table_rows = True

Enable smart quotes (1, 2 or 3) or disable by setting to 0
pdf_smartquotes = 0

	(Optional) Modify your Makefile or make.bat file

For Makefile (on *nix systems)

pdf:
 $(SPHINXBUILD) -b pdf $(ALLSPHINXOPTS) _build/pdf
 @echo
 @echo "Build finished. The PDF files are in _build/pdf."

For make.bat (on Windows):

if "%1" == "pdf" (
 %SPHINXBUILD% -b pdf %ALLSPHINXOPTS% %BUILDDIR%/pdf
 echo.
 echo.Build finished. The PDF files are in %BUILDDIR%/pdf
 goto end
)

Then you can run make pdf or sphinx-build -b pdf ... similar to how you
did it before.

19 Extensions

rst2pdf can get new features from extensions. Extensions are python modules
that can be enabled with the -e option.

Several are included with rst2pdf.

19.1 Preprocess (-e preprocess)

preprocess is a rst2pdf extension module (invoked by -e preprocess
on the rst2pdf command line).

There is a testcase for this file at tests/test_preprocess.txt

This preprocesses the source text file before handing it to docutils.

This module serves two purposes:

	It demonstrates the technique and can be a starting point for similar
user-written processing modules; and

	It provides a simplified syntax for documents which are targeted only
at rst2pdf, rather than docutils in general.

The design goal of "base rst2pdf" is to be completely compatible with
docutils, such that a file which works as a PDF can also work as HTML,
etc.

Unfortunately, base docutils is a slow-moving target, and does not
make this easy. For example, SVG images do not work properly with
the HTML backend unless you install a patch, and docutils has no
concept of page breaks or additional vertical space (other than
the <hr>).

So, while it would be nice to have documents that render perfectly
with any backend, this goal is hard to achieve for some documents,
and once you are restricted to a particular transformation type,
then you might as well have a slightly nicer syntax for your source
document.

Preprocessor extensions:

All current extensions except style occupy a single line in the
source file.

.. include::

Processes the include file as well. An include file may
either be a restructured text file, OR may be an RSON or
JSON stylesheet. The determination is made by trying to
parse it as RSON. If it passes, it is a stylesheet; if not,
well, we'll let the docutils parser have its way with it.

.. page::

Is translated into a raw PageBreak.

.. space::

Is translated into a raw Spacer. If only one number given, is
used for vertical space. This is the canonical use case, since
horizontal space is ignored anyway!

.. style::

Allows you to create in-line stylesheets. As with other
restructured text components, the stylesheet data must
be indented. Stylesheets are in RSON or JSON.

.. widths::

creates a new table style (based on table or the first
non-numeric token) and creates a class using that style
specifically for the next table in the document. (Creates
a .. class::, so you must specify .. widths:: immediately
before the table it applies to. Allows you to set the
widths for the table, using percentages.

SingleWordAtLeftColumn

If a single word at the left column is surrounded by
blank lines, the singleword style is automatically applied to
the word. This is a workaround for the broken interaction
between docutils subtitles and bibliographic metadata. (I
found that docutils was referencing my subtitles from inside
the TOC, and that seemed silly. Perhaps there is a better
workaround at a lower level in rst2pdf.)

Preprocessor operation:

The preprocessor generates a file that has the same name as the source
file, with .build_temp. embedded in the name, and then passes that
file to the restructured text parser.

This file is left on the disk after operation, because any error
messages from docutils will refer to line numbers in it, rather than
in the original source, so debugging could be difficult if the
file were automatically removed.

19.2 Dotted_TOC (-e dotted_toc)

All I did was take the wrap() method from the stock reportlab TOC generator,
and make the minimal changes to make it work on MY documents in rst2pdf.

History:

The reportlab TOC generator adds nice dots between the text and the page number.
The rst2pdf one does not.

A closer examination reveals that the rst2pdf one probably deliberately stripped
this code, because the reportlab implementation only allowed a single TOC, and
this is unacceptable for at least some rst2pdf users.

There are other differences in the rst2pdf one I don't understand. This module
is a hack to add back dots between the lines. Maybe at some point we can figure
out if this is right, or how to support dots in the TOC in the main code.

Mind you, the original RL implementation is a complete hack in any case:

	It uses a callback to a nested function which doesn't even bother to
assume the original enclosing scope is available at callback time.
This leads it to do crazy things like eval()

	It uses a single name in the canvas for the callback function
(this is what kills multiple TOC capability) when it would be
extremely easy to generate a unique name.

20 Developers

20.1 Guidelines

If you want to do something inside rst2pdf, you are welcome! The process looks something like this:

	Create an Issue for the task at https://github.com/rst2pdf/rst2pdf/issues

	If you intend to fix a bug:

	Create a minimal test case that shows the bug.

	Put it inside tests/input like the others:

	Fix the bug

During this process, you can run the individual test case to quickly
iterate. For example:

pytest tests/input/test_summary_of_test.txt

You may also wish to check the logs and output:

less tests/output/test_summary_of_test.log
xdg-open tests/output/test_summary_of_test.pdf # or 'open' on macOS

	Once resolved, copy the generated output PDF, if any, to
tests/reference and commit this along with the files in
tests/input.

	Submit a pull request.

	If you added a command line option, document it in doc/rst2pdf.txt. That
will make it appear in the manual and in the man page.

	If you implemented a new feature, please document it in manual.rst (or in
a separate file and add an include in manual.rst)

	If you implement an extension, make the docstring valid restructured text and
link it to the manual like the others.

21 Initial checkout

Clone the repo from https://github.com/rst2pdf/rst2pdf, then install and
activate a venv:

git clone https://github.com/rst2pdf/rst2pdf
cd rst2pdf
python3 -m venv .venv
. .venv/bin/activate

Ensure that setuptools and pip are up to date:

pip install --upgrade setuptools pip

Now you can install rst2pdf from this source code:

pip install -c requirements.txt -e .[aafiguresupport,mathsupport,rawhtmlsupport,sphinx,svgsupport,tests]

Note, that on Apple Silicon Macs, you may need this to get tests passing:

pip install reportlab==3.6.12 --force-reinstall --no-cache-dir --global-option=build_ext

(Look in requirements.txt for the version of reportlab to use.)

You can now work on rst2pdf development. Once complete, you can deactivate the
venv with deactivate.

21.1 Git config

After the mass-reformatting in PR 877, it is helpful to ignore the relevant
commits that simply reformatted the code when using git blame.

The ..git-blame-ignore-revs file contains the list of commits to ignore
and you can use this git config line to make git blame work more usefully:

git config blame.ignoreRevsFile .git-blame-ignore-revs

21.2 Pre-commit

rst2pdf uses the pre-commit framework to automate various style checkers.
This must be enabled locally. You can install this using pip or your local
package manager. For example, to install using pip:

pip install pre-commit

Once installed, enable it like so:

pre-commit install --allow-missing-config

If pre-commit locally behaves differently to CI, then run pre-commit clean to
clear your cache before further investigation.

21.3 Continuous Integration

There's a GitHub Actions workflow that runs when we open a pull request or
merge to main, it does some style checks and runs the test suite.

21.4 Running tests

The rst2pdf test suite generates PDFs - stored in tests/output -
which are then compared against reference PDFs - stored in
tests/reference - using the PyMuPDF Python bindings for the
MuPDF library. rst2pdf depends on a number of different tools and
libraries, such as ReportLab, and the output of these can vary slightly
between releases. The PyMuPDF library allows us to compare the structure
of the PDFs, with a minor amount of fuzzing to allow for minor differences
caused by these changes in underlying dependencies.

To run all the tests enable your venv first if it's not enabled and then call pytest:

pytest

You can also run tests in parallel using pytest-xdist by passing the -n auto flag.

Firstly install:

pip install pytest-xdist

Then run the tests in parallel:

pytest -n auto

21.4.1 Running a single test

To run one test only, simply pass the file or directory to pytest. For example:

pytest tests/input/sphinx-repeat-table-rows

This will run one test and show the output.

21.4.2 Skipping tests

To skip a test, simply create a text file in the tests/input directory
called [test].ignore containing a note on why the test is skipped. This
will mark the test as skipped when the test suite runs. This could be useful
for inherited tests that we aren't confident of the correct output for, but
where we don't want to delete/lose the test entirely.

Note

Some tests require the execution of the dot command, you should install
the package graphviz from your packages manager.

22 Licenses

This is the license for rst2pdf:

Copyright (c) 2007-2020 Roberto Alsina and the contributors to the rst2pdf project

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Some fragments of rstpdf are copied from ReportLab under the following license:

Copyright (c) 2000-2008, ReportLab Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
* Neither the name of the company nor the names of its contributors may be
 used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE OFFICERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

